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Abstract

A method is p~esented to design a commensurate microwave filter, containing stubs, unit ele-
ments and arbitrary finite attenuation poles in such a way that it satisfies arbitrary system
attenuation requirements in an optimal Gay.

1. Introduction

A filter may be called efficient, if it
satisfies the system requirements with a mi-
nimal complexity. System specifications nor–
really are reflected in a maximum pass-band
ripple or VSWR, and in a minimal attenuation
pattern in the stopband(s) . In principle,

this pattern may have any shape, and it may

also contain a number of points where the
attenuation should be essentially infinite

[fig 1] . In lumped filter theory, methods

exist to obtain the filter elements in such

a way that it satisfies all constraints in

an optimal wayl . These so called template

methods heavily rely on exact network synthe-

sis techniques. They can be translated into

the domain of microwave filters, however only

after assessing the differences in design
philosophy and in the elements available to

build-up the filter chain. As will be shown,
significant improvement will result in the
filter performances in a number of design

cases.

2. General design principles

Lumped filters derive their selectivity
mainly from the inclusion of finite imagina-

ry axis transmission zeros, (T.Z.) realised
by resonating LC sections.
In distributed commensurate filters, it is

also desirable to include T.Z. ‘S that do not

coincide with the quarter wave resonance fre-

quency of the lines, and this in view of

their superior steepness performance. 3ow-

ever, one should realise that their inclusion

may greatly complicate the structure; there-

fore, it is best to select from two alterna-

tives : either use as few finite T.Z. ‘s as
possible= or else use special physical con-
figurations such as digital elliptic filters3

or stepped halfwave interdigital filters4 .
One should realise that in the second alter-
native, one essentially makes use of a lumped
low-pass elliptic prototype, which has its
finite transmission zero’s determined in num-

ber and location from a constant minimum at-
tenuation requirement over the whole stopband
and from the relative width of a transition
zone that separates passband and stopband(s) .

All commensurate distributed filters involve
some irrational transform function, which
maps the real frequency response into an

equivalent fl Diane low or hiqh Dass behaviour.

the central frequency of the filter)

fl=atg$$- (1)
0

f2=a[tg~$---1Tf ]
o tgz=

o

(2)

(1) is the classical Richards transform, (2)
is a modified version encountered with the
stepped halfwave interdigital filter. Both
functions have the common property, th,atr
when applied to bandpass filters, both stop-
bands are mapped into the. same fl plane region.
If the stopband attenuation below and above
the passband differ, and there is no reason
to forbid this, it is clear that the !2 plane
specification to be adopted for further use
should be the most stringent specification.
In case of a bandstop filter, unsymmetric
specification with respect to the central
frequency lead to the same procedure.
While (1) and (2), when applied to most clas-
sical filter configurations, lead to a high-

er low-pass Q plane prototype, it should be

pointed out that this is no limitation to
the presented theory : indeed, with little
effort it is quite possible to extend the

formula’s to cope with band-pass behavioux
in the Q plane. While so far a strict trans-

lation of lumped filter theory can be used,

it is quite clear that this is not possible

for Q plane prototypes having effective

unit elements as part of their equivalent cir-

cuit. Indeed, since the u.e. has no counter-

part in lumped filter theory, it will be es-
sential to include it in the microwave tem-

plate method.

3. Template functions including unit elements

Skipping all theoretical derivations and

concentrating on the essentials of the proce-
dure, we define the filter insertion loss

function

Adb(!22) = -10 log 1S21(!212= 10 log[l + H(f12)l

(3)

H(S12) can allways be constructed to have the

E~amples of tfiis transform a~e ~ (f. denotes following properties :
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It is a nonnegative even function in ~
It has equal ripple behaviour in the
pass-band

[ripple Apdb]

It has m T.Z. at zero (H.P.) or infinity
(L.P.) [LC - type T.Z.]
It has q T.Z. at arbitrary finite Qk in
the stopband
The stopband behaviour is found from :

db q

‘s
= Ac + nT(y-yp)+m T(Y) +Z 2T(Y-Yk)

k=l

A
I(’J P_l

with : A = 10 log ~
c

T(Y) = 10 log coranh

Y is a logarithmic transform of

(4)

(5)

IYI
-2- (6)

the stopband,
which now runs along the positive Y axis.

L.P.

Y=
P

H.P.

Yp =

T(y)

[ fig

Q2C !-PC
y= - + ln(l- ~); Yk= - ~ ln(l- —);

f12k

- ~ ln(l+ Q2C) (7)

~~), yk=-~ln(l-fi):y= - + ln(l- — “
Qc !#c

- + ln(l+ *) (8)

is the so called template function
21 : indeed AS(Y) is build UP from adding

a number of shifte~, but except for a weighting
constant, otherwise identical functions. Con-
tributions to the attenuation are threefold :

m templates centered at the Y axis origin,
stemming from the LC transmission zero’s
[quarter wave resonances] . They only con-
tribute with their right side.

- n templates centered at Yp, stemming from
the u.e. transmission zero’s. Here also,
only the right tail is contributing, and
indeed only from the Y origin on. This
shows clearly the situations where the u.e.
contribution is important : since their ef-
fect is determined by lYp\ , which should be
as small as possible, for a maximum effecti-
veness, it is clear that in e.g. narrow
bandpass filters [Oc>>ll , the u.e. are al-
most equivalent to LC sections. Howeverr
in typical wideband designs [ Qc = 1, e.g.]
their contribution, though less pronounced,
is still worthwhile.

- q double weighted templates, centered at Yk.
The yk points are transforms of the finite

yk aXiS transmission zero’s. Their contri–
bution is really remarkable : indeed, both
sides of the template contribute, with dou-
ble weight if compared to an LC section. It

should be pointed out that (3) keeps its
passband properties irrespective of the
choice of m,n,q and the actual locations ~k.
Only the stopband attenuation is changed.
Thereforer a procedure to select these
parameters in an optimal way is entirely
based on formulae (4) to (8), together with
a strategy to accommodate the system speci-

fications and the particular filter struc-

ture.

For instance, in those cases where no unit

elements are included (e.g. digital elliptic
filter prototypes), it is quite clear that
relaxation of the specifications in that part

of the stopband which falls out of the normal
operation range of the equipment will lead to

a less complex design, or else to steeper
cut-off characteristics.

4. Final desicsn..
Let us consider fig. 3, where a transformed
AS (Y) specification is shown. If As(y) con-
tains frequencies of infinite attenuation,
this is reflected in a number of fixed
templates of the Qk type. The other yk

points, can be shifted freely over the axis;
together with the numbers m and n, they pro-
vide the necessary degrees of freedom in or-
der to satisfy As(Y). Needless to say that
the physical structure of the filter may im-
pose constraints on the numbers m,n,q. The
basic problem now is to select a minimal rea-
lisation, i.e. a realisation which minimizes
m+n+q, subject to the eventual constraints
among m,n and q. Intuitively this will call
for a crowding of the yk in those regions
where the attenuation requirements are high.
If there are no specifications over a portion
of the axis, one can use the yk to increase
the attenuation near the passband, enhancing
the filter steepness in this way, On a strict
mathematical basis, approximation theory shows
that an optimal solution will be found in the
function

E = A(Y)-A~(y)
has all its minima equal and nonnegative.
A suitable method to satisfy this criterium
is based on the Remez algorithm which invol-
ves an iterative solution of a nonlinear sys-
tem of equations . Once the solution has
been obtained, the way is open to a direct
synthesis of the filter. Needless to say
that this involves having acces to a general
filter synthesis program. An existing dis-
tributed filter synthesis pro@amS has been
modified in order to accommodate the template
method. It incorporates all the essential
steps necessary to synthesize the filter
starting with the attenuation specifications.

5. Design ~xample

Let us design a bandstop filter with 100% re-
lative bandwidth. The ripple in the passband
should be less than 2 db, while over 80% of
the stopband, in a symmetrically around f.
centered region, the attenuation should at
least be 40 db [fig.4] . This leaves a skirt
of about 10%, where the transition between
passband and stopband can occur. The filter
should be preferably symmetric, and the num-
ber of u.e. should be one less then the num-
ber of LC transmission zero’s. As few finite

axis transmission zero’s should be used.
A possible solution is shown on fig. 4. Three
LC stubs and two u.e. are used. Only one T.Z.
is used. The minimum attenuation is 42 db,
while the 40 db width of the stopband is 84%.
Other solutions are possible where one of the
requirements is exactly met, the other then
becoming better than specified. For instance,
limiting the minimum attenuation to a strict
40 db, would increase the 40 db attenuation
bandwidth to 86%. The characteristic function
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H(S12) for the cited case is : List of references

Q(02-.18533) (Q2-.62173)(Q2- .95492)]2 ‘ef” 1
G.C. TEMES, Filter Design in Trans-

H(Q2)=[ 25.69 mormed Frequency Variable, in ComPu-
(1+!22) (Q2-I.817)

The synthesized filter, with all impedances
normalized to one ohm, is shown, with its
element values on fig. 5. It is symmetric,
and the element value’s are such that it is
directly realizable using series stubs. The
resonating section can be realized by a step-
ped impedance double length stub.

6. Conclusion

The presented procedure is superior over exis-
ting procedures in matching the structure of a
microwave filter to a prescribed attenuation
specification. As such, it finds a minimal
configuration, in which every element is desig-
ned to contribute in the most efficient way
to build up the filter performance.
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